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THE INITIATION OF COMBINED STRESS WAVES
IN A THIN-WALLED TUBE DUE TO IMPACT LOADINGS

T. C. T. Tingt

Department of Materials Engineering, University of Illinois at Chicago Circle, Chicago, lllinois 60680

Abstract-—The solution near the impact end of a thin-walied tube is presented in which the end x = 0 of the
pre-stressed tube is subjected to a discontinuous combined longitudinal and torsional loading at time ¢ = 0.
The loads at x = 0 after 1 = 0 are assumed to vary continuously. Solutions are obtained for all possible combina-
tions of the discontinuous loadings at 1 = 0 and all possible variations of loads after ¢ = 0. The characteristics
of the solutions in each region, the initial speed and sometimes the initial acceleration of the boundary between
two regions are given. These are useful guides for a complete solution of combined stress wave propagation
in a thin-walled tube subjected to arbitrary impact loadings.

1. INTRODUCTION

THE unloading problem of a semi-infinite thin rod due to a longitudinal impact at the free
end, x = 0, was studied by Rakhmatulin [1] in which the longitudinal stress ¢ at x = 0
is assumed to be increased instantaneously at time ¢ = 0 to a value beyond the elastic limit
and decreased gradually thereafter (see [12] for a more thorough study). For this type of
impact loading, the wave pattern in the x ~ t plane consists of three regions: a neutral
region adjacent to the x-axis, a region of plastic waves, and an elastic unloading region
adjacent to the t-axis. Moreover, in the region of plastic waves, the simple wave solution
applies; i.e. the stress ¢ and the logitudinal particle velocity u are constant along the
characteristics which are straight lines emanated from the origin x = 0, t = 0.

The problem becomes complicated if we consider combined stress waves in a thin-
walled tube in which both longitudinal stress o and torsional stress t applied at x = 0 are
of impact type. To illustrate the complicacy of the problem, let us consider the particular
problem in which an impact type longitudinal stress alone is applied at x = 0 of a pre-
twisted thin-walled tube. If the tube is not pre-twisted, the problem is identical to the one
studied by Rakhmatulin. If the tube is pre-twisted, the wave pattern in the x ~ ¢ plane
belongs to case I11.4, studied in this paper (see Fig. 8). All together six regions will be
generated. Moreover, the solution in the second plastic region, which would be a simple
wave solution if ¢ at x = 0 were a step function, is no longer a simple wave solution.

The purpose of this paper is to study the following more general problem. The longi-
tudinal stress o and the torsional stress t applied at x = 0 are constants for ¢t < 0, have
a discontinuous jump at t = 0 and vary continuously for ¢t > 0. The variation of ¢ and 1
for t > 0 at x = 0 can be both increasing, both decreasing, or one of them increasing while
the other decreasing. The characteristics of the solution in each region are analyzed. The
uniqueness and existence of the solution for each case are also discussed.
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270 T. C. T. TiNG

The complete solution of wave propagation in the thin-walled tube for prescribed
boundary values (0, t) and 7(0, t) requires a numerical integration. However, before we
can apply any numerical scheme to the problem, we have to know how many regions are
involved near the origin x = 0, t = 0 and what are the characteristics of the solution in
eachregion. This is a very essential step, and it is the purpose of this paper to furnish this step.

2. BASIC EQUATIONS

The governing equations for the combined longitudinal and torsional waves in a thin-
walled tube of isotropic work-hardening materials are derived by Clifton [2] and can be
written in the form of a matrix differential equation (see also [3]),

Aw,+Bw, =0 (1)
where
[p 0 0 0
0 p 0 0
A =
1 o?
~+HL H
0 0 E+H02 ot
00 Hot l+HGZ‘L'2
L Hu _
0 0 -1 0 u
0 0 0 -1 v
B = W=
-1 0 0 0 c
0 -1 0 0 T

The subscripts t and x denote partial differentiation. u and v are the longitudinal and the
circumferential particle velocities, E is Young’s modulus, p is the shear modulus and p is
the mass density of the tube. In the elastic region H = 0, while in the plastic region H is
a function of the yield stress k,

a\? 2 _ 12
(§)+r—k (2)

where 6 = /3 for the von-Mises yield condition and 6 = 2 for the Tresca yield condition.

The characteristics ¢ of equation (1) are the roots of |cA —B| = 0. In the elastic region,
the roots are +c, and +c, where ¢ = E/p and ¢3 = u/p. In the plastic region, the roots
are denoted by +c¢; and +c, which stand for “fast” wave speed and “‘slow” wave speed
respectively. It was shown in [2] that

<¢; ¢ < 6o 3)
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Since A and B are both symmetric in the present problem, the left eigenvector I and
the right eigenvector r defined by

1"(cA-B) = 0, (4a)

(cA—B)r = 0, (4b)

are identical. If we introduce the following vectors (see [4])

{1 -l

where
1 1 1 1
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¢; ¢ o ¢ ¢ 0t
I e t— e 0T et e, | e b
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cs ¢ 5 ¢
the eigenvectors r and I can be written as
Fi/pc
P [ f/ g f] (7a)
Fs/pc;
L S (7b)

where r;, and r,, denote the eigenvectors r for ¢ = +¢, and ¢ = +c, respectively. It is
shown in [2] that f and s are orthogonal to each other, i.e.

f.s=0, or Y= —1 (8)

The signs for f and s in equation (5) are so chosen that they both point toward outside of
the yield surface.

If dw/dt], denotes the total derivative of w(x, t} along a characteristic curve, the char-
acteristic condition is given by (see [5, 6)

dw

I'B
dt

= 0. 9
It can be shown that the eigenvectors 1 and r are biorthogonal to each other with respect
to B. In particular,

I'Br,- =0, I'Br,. =0, I/Br,. =0. (10)
Hence along + ¢, characteristic curves, we obtain from equations (9) and (10) that

d
E‘:— cs:a'rs-+ﬁ*rf++,8‘rf- 1y
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where «”, f7 and §~ are scalars. One can obtain a similar equation for'dw/dt|. . However,
this is not needed in this paper.
Differentiation of equation (2) with respect to ¢ yields

kk, = o,.n (12)

6= [“] n— ["/OZJ. (13)
T T

Hence n is the normal to the yield surface. The tangent to the yield surface will be defined by

2
t = [gfﬂ, t.n—0. (14)

where

3. THE SOLUTION NEAR THE ORIGIN

We will now study the solution w(x, t) of equation (1) in the neighborhood of the origin
x == 0,t = 0, when the boundary value w(0, t) prescribed at x = 0 is discontinuous at t = 0.
To this end, let us assume that w(x, f) in the neighborhood of the origin can be expanded
into the following series:

wix, 1} = wOLR) + w V() + .. (15)
where
A= X/t (16)
and w'® and w'" are functions of 4 only. Then

L dw®  dw®

1 17
"= Tan Tan T (172)
A dw® dw'?
= M A——1 +0(2). 17b
Y= T Td ( ldi)+() (17b)
Since A is a function of @, and hence of w, we also have
Alw) = A® AW+ (18)
where
AY = AW®) (19a)
A = (w)TVA® (19b)

VA'® is the gradient of A'”’ with respect to the components of w®. Substitution of
equations (17) and (18) into equation (1) shows that equation (1) is satisfied for all A and ¢

provided

dw'®
1A - 2
(AA B) i 0 (20}

(AA‘O’wB)gg;‘ll = Aioiwtlf_AAmdw(o_)

~ i (20
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Let ! be the roots of
[COA©@ _B| = 0. 2)

Then the solution of equations (20) and (21) depends on whether A = ¢'” or not. We will
call a region “regular” if A # ¢® in the region, and “singular” if = ¢®. We will discuss
these two cases separately.

Regular region (). # ¢'%)
When 4 # !9, equation (20) yields

dw'®
di
and the solution of equation (21) can be shown to be
Wil = _A@TGAO®_B)g = —iq+A” 'Bq (24)

where q is a constant vector. Thus w") depends on 4 linearly. On the other hand, sub-
stitution of equations (23) and (24) into equation (17b) yields

wt|t=0 = A(O)_qu (25)

where t = 0 means t = 0", Hence w/,_, is a constant, independent of A. If we eliminate q
between equations (24) and (25), we obtain

(GA® —Bw],_o, = —Bw®. (26)

=0, or w® = const. 23)

This is a useful relation which enables one to convert w') to w,|,_, and vice versa within
the regular region.

Singular region (A = %)
When 4 = ¢!?, equation (20) yields

)]
Cl:;’/1 e 27)
where
(¢PAC_Bt® = ¢ (28)

and { is a proportional factor which depends on A. The negative sign is added to make {
positive. A means of determining { will be given later. With equations (27) and (19b),
equation (21) is a homogeneous differential equation for w!*’ which can be integrated
numerically. It should be noticed, however, that the coefficient matrix of dw(*/dA in
equation (21) is singular. This poses some problems in integrating this equation for w'V).
This will be taken up again in Section 5.

For a given boundary value w(0, t) which is discontinuous at t = 0, the solution in the
neighborhood of the origin consists of several sectors of “regular regions’ and “singular
regions”’. The solution w¥ depends only on the discontinuity in the boundary values
w(0, 1) at t = 0. In fact w® is nothing but the simple wave solution obtained in [2]. As to
w'?), the solution is obtained by equation (24) for regular regions and by integrating equa-
tion (21) for singular regions. For a step-load condition, w'’ = 0 in all regions. It should
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be noticed that w(*)(1) is not necessarily continuous across the boundary between a regular
region and a singular region even though w(x, t) is required to be continuous across such
a boundary. This is discussed in the next section.

4. THE CONTINUITY CONDITION

Let us consider w(x, t) along a curve I given by
X = Apt+arpti + ... 29)
where Ap and xr- are constants. In the x ~ t plane, k- stands for the curvature of the curve

I"att = 0.If T is the boundary between an elastic region and a plastic region, k- is identified
as the “‘initial acceleration” of this boundary. Now, from equation (16), we obtain

X 4
A=2= Aptirct+ ...

and substitution of A so obtained in equation (15) yields

dw'©
da

} +0(2). (30)
A=Ar

. o1
WX, i nonr = W)+t {W(“{A) +§Kr

Hence, we arrive at the result that if w(x, t) is continuous across I', w\%(1) and {w"(4)+
1k (dw'®/d4)} must be continuous across A = 1. The quantity in { } is the total derivative
of w(x, t) along the curve I evaluated at t = 0. Hence,

I dw©
_ {winj‘wxr il } _ (31)
A=Ar

Therefore, lim,_,, (dw/dt))- is continuous across I" while w*) need not be continuous.

If T is the boundary between two regular regions, then w*) is continuous across I'
because dw'®/di = 0 by equation (23).

If T is the boundary between a regular region and a singular region, then at 4 = A,

tim &
=0 dt

T

{W( ! }}regular region = {w( b %Krcr(o)} singufar region (32)

where use has been made of equations (23) and (27). If we convert w'"’ in the regular region
into w,},_, by using equation (26), we obtain

()»rA(O)"‘B)Wx‘mo = “B{W(l)_%xr{f(m}uzr (33)

It is understood that w'" in the right hand side is evaluated in the singular region. Equation
(33) is a useful relation which will be used to convert w,),_, in the regular region to w%(1p)
in the singular region. It should be pointed out that if the regular region adjacent to the
singular region is a plastic region, then the boundary I' is necessarily a characteristic
curve because the singular region is always a plastic region. If the regular region is an
elastic region, then I' is a loading, or an unloading, boundary depending on whether
k, > 0 or k, < 0 in the regular region.
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5. THE SOLUTION IN THE SINGULAR REGION

In the singular region, w® is obtained by integrating equation (27) while w'!) is obtained
by integrating equation (21). w'® so obtained, and in particular ¢'”, is the simple wave
solution discussed in [2]. We will now discuss the solution w'V,

If the curve I' discussed in the previous section is one of the characteristics, equation
(31) with the use of equation (27) can be written as

s |
tim ) w2, (34

The characteristic condition, equation (9), evaluated at t = 0 is reduced to
19"Bw™® —4x (1) = 0 (35)
where
197(@A® _B) = 0. (36)

Consider the characteristics ¢ in a singular region near the origin x = 0, ¢t = 0. Since
¢ is a function of ¢, and hence of w, we have, using equation (15),

W) = WO+ w4 ) (37)
= () + tc V(1) + 0(2)
where
V) = co(w®) = c(6'?) (38a)
V) = wh Ve® = ¢V yc©@, (38b)

Clearly, the first Vc® in equation (38b) is the gradient of ¢'® with respect to the com-
ponents of w'® while the second Vc¢'? is the gradient of ¢'® with respect to the components
of 6%. On the other hand, if the equation of the characteristic curves emanated from the
origin is expressed by the one-parameter family of equation:

x = At+3k(A)+ ...

where A, is the parameter and k. depends on A, we have:

dx
€= = At KA+ ...

A= f = A+ A+ ...

Elimination of the parameter /. between these two equations yields
¢ = A+3r (A +0(t?). (39)
Comparing this equation with equation (37), we obtain
Y% = c(6?) = (W) = 1 (40a)
M) = 3x,(d) = 6V . VO (40b)
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by equation (38). Therefore x,, the curvature of the characteristics at t = 0, can be deter-
mined by equation (40b).
Since w'¥ is a function of 4, differentiation of equation (40a) with respect to 4 yields

Vel —— = 1, (41a)

or by equation (27),
"‘CT(O). VC(O) = ]. (41b)

Equation (41b) furnishes a means of determining ({4). In particular, when !9 = ¢[®, we
have, using equation (7b),

~ {0 Vel = (41¢)

The left eigenvector 1 defined by equation (4a) is a function of w. Using equation (15)
for w, we write

Kw) = 1) + 0 + 0D 42

where
19) = (W) (43a)
1Y) = wVIO), (43b)

If we substitute equations {42), (39) and {18} into equation {4a), we obtain equation {36) and
I7AAQ - B+ 17 (3 AP + AAT) = 0. (44)

If we post-multiply equation (44) by r'®, the first term vanishes in view of equation (28).
Hence

l(O)"’(%K A(O)‘{-AA(”)!'(O) = 0,
or, using equations (36) and (40a),

g;xcl“”rl}r‘o’+Al‘°’TA“’r“” = 0. (45)
A
Equations (43), (35) and (27) assure that the right hand side of equation {21) is orthogonal
to I'9"; a condition necessary for the existence of a solution for dw'’'/d1 from equation (21)
(see (7]). Equation (21) can now be solved for dw'’/dJ and the resulting equation integrated
for w'¥ numerically. Although dw'?’/d4 obtained from equation {21} is not unique and
involves an arbitrary factor, this arbitrary factor can be fixed by using equation {(35). Thus
dw'/d/ has a unique solution in terms of w!® and w'"), and a step by step numerical
integration can be employed to determine w'*’,

For the purpose of this paper, however, it is more convenient to express w''’ in terms
of the right eigenvectors r. We will consider the case ¢! = ¢{°\. Then from equations (11}
and (34), w') must have the form

W) = i i o (R0 + BT+ B (i}r}of (46)

in the region where ¢!® = ¢{®. a7, f* and f~ are scalar functions of 4. k, is, by equation
(40b), related to ¥ and hence to w''', In fact k, can be expressed in terms of «™, 8% and
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f~ as in the following. Equation (46) is equivalent to four scalar equations. The last two
equations can be written as, using equation (7),

o) = Grl+a7 ) O+(BT + 57V

If we multiply both sides of this equation by Vc{% and make use of equations (40b) and
(41c¢), we obtain
kK, =a s VO LB+, VO, (47)

Therefore in the region ¢© = ¢!, w'')(1) is completely characterized by three scalar
functions a~ (4), B*(A) and B~ (). If we eliminate k, between equations (46) and (47), and
substitute the resulting equation in equation (21), we obtain a system of first order differ-
ential equations for @, f* and - which can be integrated numerically. Once we obtain
«”, B* and B, w'¥) is obtained from equations (46) and (47).

6. IMPACT ON A THIN-WALLED TUBE

We will use the results obtained in the previous sections to study the solutions w(x, t)
near the origin x = 0, t = 0, when the boundary condition w(0, ¢) is discontinuous at t = 0.
Actually, only a(0, t) is assumed to be prescribed. For simplicity we will drop the superscript
(0) but retain the superscript (1). On the other hand, the superscripts e and p stand for the
elastic and plastic regions, respectively. Superscripts other than e and p, such as a, b or m,
denote the limiting value of the quantity in the region a, b or m as (x, t) approaches the
origin (see Fig. 1). In particular, if ¢ > 0,

¢’ = lin; o(0, &)

6’ = lim o(0, —¢).

e—+0

Thus 6® and ¢“ are the stress states at x = 0, just “‘before” and “after” ¢t = 0, respectively.
We will assume that 6(x, f) = ¢” for x > 0, t < 0; i.e. the tube is initially prestressed to
the constant stress 6”. Then o(x, t) = ¢” also for x — ¢t > 0, or x — ct > 0 depending
on the situation, and the region b is a ‘‘neutral” state which is denoted by N. Moreover,
we assume that ¢” is beyond the elastic limit and hence is on a yield surface. The case
when ¢’ is below the initial yield surface requires only a simple modification and hence
the assumption does not lose the generality of the results obtained here.

Now, depending on the relative position of 6® and ¢ in the ¢ ~ 7 plane, the problem
can be divided into several groups. Within each group, there may be up to four different
cases depending on the direction of 67, which is the direction of the stress path (0, t) in
the ¢ ~ 1 plane right after t = 0. In this paper we will restrict both ¢® and ¢° to be in the
first quadrant of the o ~ 7 plane. Then there are six groups which exhaust all possibilities.
The first two groups are actually special cases of other groups, but since the results are
not easily reducible, and moreover some properties are not readily visible from other
groups, they are presented as separate groups. As a matter of fact, presentation of groups
I and II simplifies the analysis of the rest of the groups.

Group 1

In this group, 6“ is on the stress path for fast simple waves leading from ¢” (see Figs. 1-4).
Depending on the direction of of, there are four cases which we will discuss separately
below.
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Case 1.1. If the vector of is between s and t, the wave pattern in the x ~ ¢ plane will
have the form shown in Fig. 1. N stands for the neutral region and P for the plastic region.
According to Lax [8], the solution in a region which is adjacent to a constant region is a

Yield surface

Cs NFSW

CFSW=centered fast simple waves
NFSW= non centered fast simpie waves

F1G. 1. Case L1

simple wave solution. Thus in the region next to N bounded by ¢/ and ¢} we have “centered
fast simple waves™ and abbreviated by CFSW. Actually, Lax’s theorem can be generalized
as follows: if a region is bounded by a characteristic and w is constant on this characteristic,
then the solution in the region is a simple wave solution. The proof is omitted here. Using
this general result, we see that the solution in the region m bounded by ¢, and ¢/ must be
a simple wave solution since w is constant on ¢;. This time, however, the solution is “non-
centered fast simple waves” and abbreviated by NFSW. Therefore,

6" = yf¢ (48)

where y is a constant. Since the discontinuity in @, across ¢f is proportional to s* (see [4]),
we have
o — ot = 1s" (49)
where # is a constant.
From the orthogonality condition f.s = 0, we obtain from equations (48) and {49)

y = (o7 . TH(F*.£9). (50)

Thus y > 0 which assures that 67" as expressed by equation (48) points towards outside of
the yield surface and hence region m is indeed plastic.

The dotted line in the o ~ 1 plane shows qualitatively how the stress state of a fixed
station x # 0 will vary as time f increases.

Case 1.2. For this case, Fig. 2, 67 is between t and the vertical line drawn downward

from ¢° Mathematically, this condition is given by
k<0, gl > 0. (51

As in case 1.1, we have CFSW followed by NFSW. Thus equation (48) still applies. Using
equation (5), we write

o = Y (52)
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In Fig. 2, E stands for the elastic region. The discontinuity in &, across the unloading
boundary c, is given by (see [9, 4]),

02— = Gl(cg, ¢z, C )0 kk? (53)

=1 = G(c;, Cp» cu)ﬁk“kf (54)

FiG. 2. Case 1.2

where

1 1 _1_ 1 I‘_ i

Co G\ E\E 2
NTET

cﬁ I\t I\

Elimination of a", 17" between equations (52)(54) yields the following equation for c,:

il
¢ A\ __ d' (55)

AT KNN3
a al\aa

where ¢, should be ¢i. In view of equation (51), it is not difficult to show that there exists
one and only one ¢, in the range ¢ < ¢, < ¢,.

Again, the dotted line in the ¢ ~ t plane shows qualitatively the stress path of other
stations x # 0, as ¢t increases.

Case 1.3. This case applies when a7 is between s and —t (Fig. 3). The boundary between
the region m and the region of CFSW is an unloading boundary across which equation (33)
applies. Writing in terms of the present case, we have

G(CO9CZSC)

(C2AS—B)W! = L {Br7, (56)
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FIG. 3. Case 1.3.

since w'" = 0 in the CFSW region and the region m is elastic. If we solve for w" we have

021 )
( ) 2p¢;
Z
2
2

m Kr(cf)é(Cf) &3 l
LA T— +1— 2pc, (57)
%

7
—_— 2‘
Vi

—1 i

where c;, ¥, 0 and 7 in the right hand side should be cf's Yf, 0™ and 1™ In this case, o,
Yy, o™ and 1™ are identical to ¢f, 5, ¢ and 1° respectively.
The last two components of equation (57) imply that

92a

(w,)z . (58)

The discontinuity across the loading boundary ¢, is (see [9])

1 1
( )(0’.’ o;) = pHokk{ (59)
g i
1 1 n a 2,ajala
——— |t} —17) = pHO* kK], (60)
¢z G
The condition across ¢, is
o = o, (61)

Finally, the fact that the yield stress k on c¢; and ¢, must be identical for each x means

that (see [4])
el el 1) o o
c; ¢f ¢ o
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Omitting the lengthy algebraic manipulations, equations (58)—(62) can be reduced to the
following single equation for ¢;:

1 1 l+1 1 1 i i
¢t ¢ ¢ cf\cd GI\¢

111+1+1 1)1 1
¢t a e\ ¢\G

¢; and ¢, in this equation are actually ¢f and c{. ¢, obtained from this equation is the
“initial” speed of the loading boundary between the regions n and a. Again it can be shown
that for 0 < ¢, < ¢, there exists only one solution.

Case 1.4. The conditions on ¢? for this case to apply are (see Fig. 4)

k<0, o%<0. (64)

ke = —(a®. 9" (63)

Equation (58) still applies to ¢}, and since o} = of, we have

1

0’;" = O'? aa ( w2 . (65)
Gz‘ra l//S)

v
c \crsw
" c®

’

FIG. 4. Case 1.4.

It should be noticed that the “*entire”’ unloading boundary c, and the solution in the
region bounded by c, and ¢, are determined by the boundary value ¢(0, t) alone and are
independent of (0, ¢).

Group 11

In this group ¢ is on the stress path for slow simple waves leading from o” (Figs. 5 and 6).
There are four cases depending on the direction of ¢?.

Case IL1. This case applies when 67 is bounded by s and t (Fig. 5). The region mis a
region of NFSW. Hence

LAY ¢ (66)
where 7 is a constant to be determined. The condition across ¢? can be obtained by using
equation (33):
(A" —Byw;' = — B{w'(c}) —re(c)l(crt}

Substitution of w" from equation (66) yields

wiieh) = %KC(C’:)C(ci’)r’;w(l - )r';.

Hl
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Case .|
s \
oSSW f o7

NESW Yield t
surface
\ t
\\\
S
cm‘cb %
Cose II. 2
NFSW =non centered fast simple waves
QSSW « quasi slow simpie waves
Fi1G. 5. Cases L1 and 11.2.
Comparing this with equation (46), it is seen that
cb
a (A= A=0 B )=y 1~—E—g— , for i=ch (67)
S

With this as the initial condition, one can integrate equation {21) to obtain w'*(4) for
¢® > 4 = ¢ This applies to the singular region which is between the regions a and m. This
region is called ““‘quasi-slow simple waves™ and abbreviated by QSSW because if w'') were
identically zero, the region would be a slow simple wave region.

In using equations (67} as the initial condition, y is still an unknown quantity. However,
since equation (21) is linear in w'"), if w(')(1) is the solution with y = 1, the actual solution is
w = yw'(A). Thus despite the fact that y is an unknown, the numerical integration for
w'Y(1) with the initial condition equation (67) can be carried out by using the particular
solution for y = 1.

Suppose we have obtained the solution w'')(1). This means we have obtained ™ (4),
BH(A)and B (A for & > 4 > % In particular, we know ¥ (c?). B7(c?) and w'¥(c?). Now, the
condition across ¢ between the region a and the region of QSSW is obtained by using
equation (33).

(A —B)w! = —B{wH (e —3x (cO{cHr?}

(68)
= —B{a (- + BTG + (g

by equation (46). If we solve this equation for wf, or for o] in particular, keeping in mind
that the region a is plastic, we obtain

Qa

- 1, (.0 L SR 4 69
6! = {6 +3a7(c)}s +1~—(c§/c})2f (69)
where J is a constant and
c* c*
Q* = (1+—’*)ﬁ*(c;“)+(l—~i)ﬁ“(c;")» (70)
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Equation (69) is equivalent to two scalar equations for the two unknown constants é and y.
Q¢ in equation (69) is obtained by replacing * in (70) by a.

The validity of the solution requires that y > 0. Assuming that this is indeed the case,
we have, by equations (67) and (70), Q* > 0. If ¢ is not very far from o®, Q° will also be
positive and o/ defined by equation (69) is indeed between s and t* as shown in Fig. 5.

If 6° is very far from ¢® and as a result if Q° is negative, then 67 obtained by equation (69)
will be between s” and —t°. That is, the wave pattern in the x ~ ¢ plane of Fig. 5, is a result
of the loading shown in the 6 ~ t plane of Fig. 6, in which 67 is between s* and —t9, (i.e.
case I1.3). Therefore, regardless of Q* > 0or Q? < 0, there exists only one solution. However,
this second solution due to Q° < 0 is considered unlikely for the following reason. If cf is
so much different from c? and Q° has to change its value from positive to negative, there
exists a case in which Q* = 0. If Q° = 0, then y = oo which is physically unrealistic.

Case 11.2. This case applies when o} is between t and e, as shown in Fig. 5. e; will be
defined later. The analysis is the same as case II.1 except that the region a is now elastic.
Therefore, equation (68) is replaced by

(A~ B)ws = —B{w(ct) — drle)i(cthes-}
= —B{ef) — el +o (- + B +B (s}

by equation (46). If we solve this equation for w, or for ¢/ in particular, we obtain

o = 1o R —Reles + ) a
where Q° is defined in equation (70) and
s
e,=—| 0" . 72
1

It can be shown that e, always lies to the right of —s as shown in Fig. 5. Equation (71)
is equivalent to two scalar equations for the two unknowns y and k{c?), the latter is the
initial acceleration of the unloading boundary c,,.

Case I1.3. If of is between s and —t, the wave pattern in the x ~ ¢ plane will be the one
shown in Fig. 6. By Lax’s theorem, we have simple waves in the regions m and n. In the
regions m and n, 6 and u are constants along straight lines with dx/dt = ¢,. Moreover,
7 and vare constants along straight lines with dx/dt = ¢, in the region n. Hence, we can write

—ay/pc, —ay/pco
0 —a}/pc
wr = . W= R (73)
of o7
0 Ty

The fact that the yield stress k on ¢, and ¢, must be the same for each x means that [4],

el 2] +k(3-1] - (74)

€y € G €
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Case I1.,3
Case n./4} O5SW
* \ Cu C’\\

a';’ -—Case I1.3

Yieid
surface

a
I,

Co Case I 4

F1G. 6. Cases 11.3 and 11.4.

Equation (74} is reduced to, using equation (73),

11
. & ¢ &,
BEOTT 1 it
s

s ]

(75)

The condition across the elastic—plastic boundary c, is obtained by using equation (33):

(GA°—B)w; = —B{w(cy) —Srp(c)(c)rs- |
= ~B{3{k(c}) ~ kU +a™(c)ry-
+ BT + BT ).

From equations (73), (75) and (76), we find, omitting the lengthy calculations,

1 1 1 1 1 1
A — €Dl = —c, ?+c—o)(?+c‘2)(;§—c—f)¢
S L A T T R
@ (@) = ¢ ¢, Co (cs cz)(cﬁ c})d)
S I R T
Frle) =< cz+cf (cf+co)(c§ c%)d)
ciem o (LT L1
=< €2 Cf)(cf 00)(03 Cg)(p

where

(76)

(77

(78a)

(78b)

(78¢)

(79)
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¢; and ¢, in the right hand sides of equations (77)479) are ¢} and c7, respectively. With the
initial values of a~, f* and B~ given by equations (78), w") in the region of QSSW can be
obtained in the similar manner as in case IL1. In particular, consideration of the condition
across ¢f yields the same equation (69) from which the two unknowns é and o7 are deter-
mined. Notice that x(c}), the initial curvature of the characteristic curve with initial slope
s, is determined by using equation (40b) while k{(c?), the initial curvature of the loading
boundary ¢, is determined by equation (77).

The validity of the solution requires that o' < 0. Hence § and ™ are negative initially
by equations (78b} and (78c). By the same argument as in case IL.1, Q° of equation (70} will
be negative. Hence 67 as expressed by equation (69) will be between s* and —t* as shown
in Fig. 6.

Case 11.4. This case applies when of is between —t and e, (Fig. 6). The analysis is exactly
the same as in case 11.3 except the last step, where instead of equation (69), equation (71) is
used to determine ¢} and k{c?).

Group 111

In this group ¢ can be reached from ¢® by following the stress path for fast simple
waves and then the stress path for slow simple waves (Figs. 7 and 8). There are four cases.
Case 111.1 and case I11.2. The solutions of these two cases (Fig. 7) can be obtained from

(I.1)
(m. 2) (m 1
, X\ AN s
o7

PE Cs \NFSW /\

2

" e
CoN\CFsw Yield

/surfoce
a?

cp

FiG. 7. Cases 1111 and 1.2,

the solutions of cases 1.1 and I1.2 by adding an additional centered fast simple wave region.
Case 111.3 and case 111.4. For these two cases (Fig. 8), w" is given by equation (57)
while wf can be written as

0
o KHEODUSD |~ y/pes
NP7 3

a1

i

(80)

where y is to be determined. The condition that k be identical on ¢, and ¢, yields [4],

1 1 1 1
k,’"(———m) +k§'(—"——) =0
¢, cf crocy



286 T. C. T. TING

Fi1G. 8. Cases 1.3 and 111.4.

This is reduced to, using equations (57) and (80),

-}
a
y = —h L+WH > 0 8D
Thus y is determined by equation (81). The condition across the loading boundary ¢, is

the same equation obtained in equation (76). Substitution of w; from equation (80) with
y expressed by equation (81) into (76), we find, omitting the extremely lengthy calculations :

111 1

) = eI = el TP
Sl _ ==
(ci c(z,) ( ¢, ¢,

1 Lyt 1yt o1
(@) = —rplemen s A _col\e alle o (83a)
* (&) = —wrl<f fzc}(l 1(1 1\[1 1
e 1 | it | s g
¢y cpl\es cf\cs ¢
BHE) = — kel e (83b)
s el f4(11(11(11
oo | baiuitwad | ook oy
g col\er cf\e ¢
(1 1)(1 1)
e\ ¢\ ¢
B () = —xr(C7)C(C'}')Z 2 lf 1 L (83c)
o
c, ¢
where
_ (L L1 1+1+i_lzii
¢= cz+c, ez 3\t k) \e& <l \ex ¢
2(1 1\[1 1\ 2{1 1\[1 1}\[1 1
N U O I
ciler col\et cacpl cp\es cpflcr cpf\eses cp
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¢; and ¢, on the right hand sides of equations (82)-(84) are cJ and c{, respectively. With the
initial values of « 7, 8" and B~ given by equations (83), the rest of the analysis is similar to
the one illustrated in cases 11.3 and IL.4. The result is as follows. For case 111.3, equation (69)
determines the unknowns 6 and «(cy). For case Iil.4, equation (71) determines the un-
knowns x{(c}) and kr(cg). For the solution to be valid, zy must be positive, which implies
kr(c}) > 0 by equations (80) and (81). Hence f7(c}) < 0 and f7(c}) < 0 by equations (83)
and " < 0. By the same argument as in case I11.1, Q* < 0. Hence 67 as given by equation (69)
is indeed between —t and s, and &7 given by equation (71) is between —t and e_.

Group IV

In this group (Figs. 9 and 10), 6° can be reached from ¢” only through an elastic un-
loading, an elastic reloading and a plastic loading along the stress path for slow simple
waves. There are four cases.

Case IV.1 and case IV.2. In these two cases (Fig. 9), the discontinuity in ¢ is propagated
along ¢, with constant strength while the discontinuity in 7 is propagated along ¢, with
diminishing strength. This is so because ¢, is also the loading boundary c,.

(IZ. 1)

(I.2)
\ N\ C‘\ossw
t Cy

Fi16.9. Cases IV.1 and IV.2.

In the region m, w}" is given by equation (73). Using equation (26) to convert w” to
w)(]) for A in the region m and let A = c,, we obtain,

—1/pcy
0

Uy = |1 2] gm

w(c,) ( co)"' R (85)
0

This is in fact dw/dt], -, along the lower side of x = ¢,t. As to dw/d¢|, ., along the upper
side of x = c¢,t, we have

0
- C
wiiey) = w'"“’(cz)+(1_c—2)"?“ e (86)
o 0
7
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since 7 and v alone can be discontinuous across x = ¢,z The fact that ¢, is also the loading
boundary means that k should be constant along the upper side of x = ¢,t, ie.

O,E
Eﬁa"‘”(cz) +1""V(c,) = 0.

Using equations (85) and (86), this condition yields

y = —a"/0%t" (87)
w} is now determined by equation (26), i.e.
(c,A"~Byw' = —Bw™"Y(c,) (88)
and the condition across ¢ is, by equations {33) and (46},
(A"~ BJwW] = —B{o (e + B (I +B( ). (89)
Omitting the lengthy calculations, we obtain the following result from equations (85)-{89):
R N I I S O A O IR W A T |
- c‘(@“&)(Z—Z)(Z"ES)(??}) o’
a(c) = i (90a)

o
1 141 Lyf1 1 62
Pt | ottt | v St
CZ CO CS (’2 CS cf
1 1yt 1\yj1r 1yj1 1
LI bl | st | b St | B R
€y Cof \Cy T Cpf\Cp T Cof \ef ¢5f o

{1 1}(1 I)(i__i) g
At —F
€, Cofl\eg T opfley

where ¢ and ¢, on the right hand sides of equations (90} are c; and ¢f, respectively. With
the initial values of ™, 7 and ™ given by these equations, the rest of the analysis is straight
forward. For case IV.1, equation (69) determines the unknowns ¢ and { while for case
IV.2, equation (71) determines the unknowns o}" and x{(cf). For the solution to be valid, we
must have ¢7* > 0. Hence $(c?) > 0, by equations (90). Thus Q" > 0 and Q° > 0. Again,
this is true in most cases and if this is not the case the discussion at the end of case IL.1
applies.

Case IV.3 and case I'V.4. In these two cases (Fig. 10), the discontinuity in g is propagated
along ¢, while the discontinuity in 7 is propagated along ¢,, both with constant strength.

{90b)

Fic. 10, Cases IV.3 and IV A
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w and w7 are given by equation (73). The condition that the yield stress along ¢, should be
the same as in the peutral region gives the same equation, equation {75), except all the super-
script b should be replaced by n. The rest of the analysis is the same as in cases 11.3 and
11.4, respectively.

Group V
In this group, 6° can be reached from o’ following the stress path for fast simple waves
and then an elastic unloading (Figs. 11 and 12). There are only two cases.
Case V.1. This case applies when ¢/ < 0, Fig. 11. w* is given by equation (57), but since
a7 = of, we have
_ kplep)UcT)
{f?f < 2}2 -1

This gives the initial curvature x of the unloading boundary. Using equation ($1), equation
(57} can be written as

) 92 m
Wy ;,, = 0" o1

2
%l | -
wh=g¢l 6%t s(c§+ )Epcf (92)

~

N Yield
surface

FiG. 11 Case V.1

where ¢;, Y, 0 and 7 are cf, Y, 6™ and 7™, respectively. The discontinuity in t and v are
propagated with constant strength along x = c¢,t. As in case L4, the unloading boundary
¢, and the solution in the elastic region bounded by ¢, and ¢, depend only on the boundary
value (0, 1) and are independent of {0, 1).

Case V.2. This case applies when o > 0, Fig. 12. The region m is a region of fast simple
waves, and hence,

Wy o= yIf 93)
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Yieid
surface

FiG. 12, Case V.2

Since ¢, is also an unloading boundary, the discontinuities in T and v are propagated along
X = ¢,t with varying strength. Across x = c,t, we have
8- 1P = — pc,{v° —vP).
Along the upper side of x = ¢,t, we have
7°— pc,v° = const.

Hence
dr® 1 dr? do?

‘a‘;’“‘: “é"cg'*‘pcz“&? (94&)
do® 1 dr®
hu AL S L 4
dt  pc, dt (94b)
If we use equation {26) to convert w;" expressed by equation (93) into w™'¥(c,) we obtain
i) =y 1- 2| e 5
W es) v(l ol (95)

Noticing that w™!(c,) = dwf/dt and w*V(c,) = dw®/dt in this case, we obtain from
equations (94) and (95),

l/’f/PCj
_{y_c)!
(1 L;r)f 2ea
W(cy) = y(i —m) —y 96)
&y
_(1__2); 5
L S / m

If we use equation (26) again to convert w*'{c,) into w?, we obtain

(1 1)(1 1)

S 3] p2a

. Cz Cf Co 0 T a

= T 12 o o7
g o

In equations (96) and (97), ¢, and ¥, are ¢} and Y7, respectively. Since o7 > 0,y > 0. The
solution is valid. As in the previous case the solution in the region of NFSW depends only
on o{0, ¢), not on {0, 7).
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Group V1

In this group, ¢ is located inside the yield surface which passes through ¢%, and is to
the left of ¢®. The solution is trivial, If o(0, 1) = g(t) and (0, t) = A(r), we have

o(x, 1) = g(tm—g), o, ) = h(zmgf-). 98)

0 2

Thus, we have an elastic simple wave solution.

7. DISCUSSION AND CONCLUDING REMARKS

The solutions presented in the preceding section are for a thin-walled tube, which is
initially prestressed beyond the elastic limit, subjected to a discontinuous loading at the
boundary x = 0. The discontinuity occurs at ¢ = 0, and after ¢t = 0 the loads at x =0
are arbitrary but continuous. If the initially prestressed state is not in the plastic region,
the solutions obtained in the last section are modified by adding an elastic shock wave of
constant magnitude along x = ¢ t. For any given discontinuous loading condition, a
solution exists and is unique, except the unlikely case in which * of equation (70) vanishes.
The question whether Q° can be zero or not is still open, mathematically at least, since
this amounts to finding w)(4) of equation (21) analytically. Physically, O° = 0 does not
seem to represent a realistic situation.

From the results obtained, it is seen that a discontinuous jump from a lower yield
surface to a higher yield surface, and a continuous loading into an even higher vield surface
thereafter at the boundary x = 0, does not necessarily produce a continuous plastic flow
for other sections near the boundary of the tube. This phenomenon is not unexpected in
view of the previous studies on the same problem with less general boundary conditions
[2, 4]. There are, however, other results which are new and unexpected. For instance, the
dependence of the solution and the elastic—plastic boundary on o(0, t) alone, not on (0, 1)
prescribed at the boundary as discussed in cases 1.4, V.1 and V.2, is unexpected. As is well-
known, the solution is in general dependent on the boundary conditions ¢(0, t) and (0, ¢).
Another unexpected result is the coincidence of the elastic-plastic boundary with the shear
wave front ¢, as discussed in cases IV.1, IV.2 and V.2,

The continuity of the solutions from one case to the other within a group is obviously
satisfied. Less obvious is the continuity of the solutions from one group to the other group.
As we stated in the beginning of Section 6, groups { and II are particular cases of other
groups but since the results are not readily reducible, they are presented as separate groups.
To illustrate this point, let us consider case 1112, Fig. 7, in which ¢ is very close to 6™
In the limiting case when ¢° = o™, case II1.2 should be reduced to case 1.2, Fig. 2. Thus
case 1.2 is a particular case of case I11.2. But in the particular case 1.2, we need to determine
the initial speed of the unloading boundary c,, which is given by equation (55), while for
the general case 1112 the initial ¢, is ¢2. This sounds like a contradiction but a look at
Fig. 13 explains the paradox. Figure 13 shows qualitatively the wave pattern in the x ~ ¢
plane of case I11.2 when ¢° is very close to ¢™. The region of QSSW will be very small and
vanishes when ¢* = ¢”.

Another example is the particular case of case 111.4, Fig. 8, when ¢” is very close 1o o™
in the limit when ¢° = ¢™ we should obtain case I1.4, Fig. 6. Figure 14 shows qualitatively
how case I11.4 is reduced to case I1.4 as ¢® approaches ™. In the limit, the region of CFSW
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F1G. 14. Case HI1.4 with ¢® = o™ This is reduced to case 1.4 when ¢° = ¢™.

disappears. The thin lines in the elastic regions indicate that the solutions there are simple
wave solutions. Notice that the precursor wave, or the wave front, in the neutral region is
propagated first at the constant speed of ¢}, and then ¢,. This is unusual in view of the
fact that the material is assumed to be homogeneous and the yield stress in the neutral
region is constant in this example.

Two more examples of limiting process are depicted in Figs. 15 and 16. In both figures,
the discontinuity in shear across ¢, diminishes to zero at some distance from the origin.
In Fig. 15, the distance at which the discontinuity vanishes depends on how close o’ is
to 6”. In Fig. 16, this depends on how close ¢” is to ¢™. Both figures are self-explanatory.

FiG. 15. Case 1V.2 with ¢® = ¢". This is reduced to case 11.2 when ¢ = ¢"
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FiG. 16. Case V.2 when ¢ = ¢™ and k! > 0. This is reduced to case .1 when ¢* = ¢™.

It should be emphasized from these examples that the solutions obtained in Section 6
apply only to the neighborhood of the origin x = 0, = 0.

The analysis presented here can be applied to the case where 6° and ¢ are not in the
same quadrant in the 0 ~ 7 plane. It can also be applied to the case where 6{0, ¢} for t < 0
is not necessarily constant, i.e. 67 # 0. The results presented in Sections 4 and 5 are fairly
general and can be applied to other types of combined stress waves such as pressure-
two-shear waves [10] and to other types of materials such as combined isotropic and kine-
matic work hardening materials [11] subject to impact loadings.
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A6crpakt —LlaloTcs pelieHne B MOMEHT KOHUA yaapa no TOHKOCTEHHOK Tpybe, kpait rotopoit x=0
NPENBAPHTENBHO HANPIKEH U NOABEPXEH HeHCTBHIO pa3pHBHOM, CIIOKHON, IPONOABHONR W KDY TH/ILHOM
HAarpy3oK, ans apemenu f=0. Tlogpalymesaercd, 4To Harpydka nns x=0 nocne =0 wiMeHscTen
nocroguno. floayyaercs peiueHne AAS BCEX BOIMONHEIX koMOHHAumll Da3pHIBHBIX HArpy3oK Ais
t=0 s A% BCEX BOIMOXKHBIX xoMmOuHaKi Harpy3ok mocne ¢=0. LlalTcs: XapakTepHCTHKH pelueHuit
B KaxnoM paiione TpyOBl, HavajbHas CKODOCTB M HHOTJA HAYAJIBHOE YCKODEHME HA TPaHHUBI MEXIY
AByMa paioHamu. Bee OHH 0Ka3RIBAIOTCA MONEIHBIMU YKASATCNAMHU [UIA TIONHOro PELIEHHA CIKHOTO
PACOpOCTPAHEHHN BOJIHBL HANPAXKCHHE B TOHKOCTesHo# TpyDe, noasepxeunol neHCTBHIO HATDYIKH
TPOUIBOBHOTO ¥Aapa.



